

Non-Parametric Optimization in Abaqus

2016

About this Course

Course objectives

Upon completion of this course you will be able to:

- Apply topology, shape, sizing and bead optimization techniques to your designs and produce lightweight, strong and durable components
- Reduce iterations of designs
- Use the optimization interface in Abaqus/CAE for setup, execution, monitoring and postprocessing of topology, shape, sizing and bead optimization problems
- Use Tosca's structural optimization capability for highly nonlinear problems

Targeted audience

Finite element analysts or product designers with some background in finite element analysis

Prerequisites

Some familiarity with Abaqus/CAE is useful but not required.

Day 1

Lecture 1 Introduction

Lecture 2	Condition-based Topology Optimization
Workshop 1a	Condition-based Topology Optimization of a Gear
Workshop 1b	Condition-based Topology Optimization of a Landing Gear Torque Link (optional)
Lecture 3	Geometric Restrictions and Filtering
Workshop 2a	Stamping Geometric Restriction
Workshop 2b	Demold Control Using the Central Plane Technique
Workshop 2c	Symmetry Geometric Restriction
Lecture 4	Sensitivity-based Topology Optimization
Workshop 3a	Sensitivity-based Topology Optimization of a Gear
Workshop 3b	Sensitivity-based Topology Optimization of a Landing Gear Torque Link Assembly (optional)
Lecture 5	Shape Optimization
Workshop 4	Shape Optimization of a Plate with a Hole
Lecture 6	Sizing Optimization
Workshop 5	Sensitivity-based Sizing Optimization of a Holder
Lecture 7	Bead Optimization

Workshop 6 Bead Optimization of a Hood

Additional Material

- Appendix 1 Geometric Restrictions in Shape Optimization
- Appendix 2 Nonlinear Effects in Topology Optimization

SIMULIA

- SIMULIA is the Dassault Systèmes brand for Realistic Simulation solutions
- Portfolio of established, best-in-class products
 - Abaqus, Isight, Tosca, fe-safe
 - All using a common extended licensing pool

Join the Community!

How can you maximize the robust technology of the SIMULIA Portfolio ? Connect with peers to share knowledge and get technical insights

Go to <u>www.3ds.com/slc</u> to log in or join!

Let the SIMULIA Learning Community be Your Portal to 21st Century Innovation

Discover new ways to explore how to leverage realistic simulation to drive product innovation. Join the thousands of Abaqus and Isight users who are already gaining valuable knowledge from the SIMULIA Learning Community.

For more information and registration, visit **3ds.com/simulia-learning**. **Connect. Share. Spark Innovation.**

SIMULIA Training

http://www.3ds.com/products-services/simulia/services/training-courses/

 ▲ … ▼ SIMULIA ▼ SERVICES ▼ TRAINING COURSES ▼ 	SCHEDULE & REGISTRATION •	
3 SIMULIA	in f 🖤 🔠 🍞	
SIMULIA SERVICES PROVIDING HIGH QUALITY SIMULATION AND TRAINING SERVICES ENABLE OUR CUSTOMERS TO BE MORE PRODUCTIVE AND COMPETITIVE	S TO	

Training Schedule & Registration

We offer regularly scheduled public seminars as well as training courses at customer sites. An extensive range of courses are available, ranging from basic introductions to advanced courses that cover specific analysis topics and applications. On-site courses can be customized to focus on topics of particular interest to the customer, based on the customer's prior specification. To view the worldwide course schedule and to register for a course, visit the links below.

North American

- > By Location
- > By Course

International

> By Location

> By Course

Live Online Training

> Full Schedule

The software described in this documentation is available only under license from Dassault Systèmes or its subsidiaries and may be used or reproduced only in accordance with the terms of such license.

This documentation and the software described in this documentation are subject to change without prior notice.

Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation.

No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiaries.

© Dassault Systèmes, 2016

Printed in the United States of America.

Abaqus, the 3DS logo, and SIMULIA are trademarks or registered trademarks of Dassault Systèmes or its subsidiaries in the US and/or other countries.

Other company, product, and service names may be trademarks or service marks of their respective owners. For additional information concerning trademarks, copyrights, and licenses, see the Legal Notices in the Abaqus Installation and Licensing Guide.

Lecture 1	3/16	Updated for 2016
Lecture 2	3/16	Updated for 2016
Lecture 3	3/16	Updated for 2016
Lecture 4	3/16	Updated for 2016
Lecture 5	3/16	Updated for 2016
Lecture 6	3/16	Updated for 2016
Lecture 7	3/16	New for 2016
Appendix 1	3/16	Updated for 2016
Appendix 2	3/16	Updated for 2016
Workshop 1a	3/16	Updated for 2016
Workshop 1b	3/16	Updated for 2016
Workshop 2a	3/16	Updated for 2016
Workshop 2b	3/16	Updated for 2016
Workshop 2c	3/16	Updated for 2016
Workshop 3a	3/16	Updated for 2016
Workshop 3b	3/16	Updated for 2016
Workshop 4	3/16	Updated for 2016
Workshop 5	3/16	Updated for 2016
Workshop 6	3/16	New for 2016

Lesson 1: Introduction

- Overview
- Tosca and Optimization Module in Abaqus/CAE
- Tosca and Isight

Lesson 2: Condition-based Topology Optimization

- Algorithms for Topology Optimization
- Condition-based Topology Optimization
- Basic Terminology
- Optimization Workflow
- Abaqus Model
- Optimization Task
- Design Responses
- Objective Function
- Constraints
- Geometric Restrictions
- Setup
- Execution and Monitoring
- Results
- Extraction
- Workshop Preliminaries
- Workshop 1a: Condition-based Topology Optimization of a Gear
- Workshop 1b: Condition-based Topology Optimization of a Landing Gear Torque Link (Optional)

Lesson 3: Geometric Restrictions and Filtering

Lesson content:

- Geometric Restrictions
- ▶ Filtering
- Workshop 2a: Stamping Geometric Restrictions
- Workshop 2b: Demold Control Using the Central Plane Technique (Optional)
- Workshop 2c: Symmetry Geometric Restrictions

www.3ds.com | © Dassault Systèmes

Lesson 4: Sensitivity-based Topology Optimization

- Algorithms for Topology Optimization
- General Topology Optimization
- Optimization Tasks
- Design Responses
- Objective Function
- Constraints
- Condition-based vs. Sensitivity-based Optimization
- Postprocessing
- Workshop 3a: Sensitivity-based Topology Optimization of a Gear
- Workshop 3b: Sensitivity-based Topology Optimization of a Landing Gear Torque Link Assembly (Optional)

Lesson 5: Shape Optimization

- Basic Terminology
- Shape Optimization
- Abaqus Model
- Optimization Task
- Design Responses
- Objective and Constraints
- Geometric Restrictions
- Stop Conditions
- Postprocessing
- Workshop 4: Shape Optimization of a Plate with a Hole

Lesson 6: Sizing Optimization

- Sizing Optimization
- Basic Terminology
- Optimization Task
- Geometric Restrictions
- Postprocessing
- Example: Sizing Optimization of a Car Front Door
- Nonlinearities
- Workshop 5: Sensitivity-based Sizing Optimization of a Holder

Lesson 7: Bead Optimization

- Bead stiffeners
- Bead pattern design
- Bead optimization in Tosca Structure
- Example: Beam bending
- Moment of inertia of a rectangular bead
- Algorithms for Bead Optimization
- Basic Terminology
- Postprocessing
- Workshop 6: Bead Optimization of a Hood

Appendix 1: Geometric Restrictions in Shape Optimization

Appendix content:

- Demold Control
- Turn Control
- Drill Control
- Planar Symmetry
- Stamp Control
- Growth
- Design Direction
- Penetration Check
- Slide Region

Appendix 2: Nonlinear Effects in Topology Optimization

Appendix content:

- Example: Beam Structure
- Topology Optimization of a Beam Structure: Linear geometry
- Topology Optimization of a Beam Structure: Nonlinear geometry
- Example: Gear Shaft Assembly
- Conclusions

